

• HTML: The skeleton – provides structure.

• CSS: The skin and style – defines appearance.

• JavaScript: The brain – adds behavior and
interactivity.

• Heading tag:

• Paragraph tag:

• Paragraph tag:

• Line Break & Horizontal Rule

• Formatting Text

• Links and Navigation

• Images

• Lists

• Table

• Forms

Inlin

e

Interna

l

External

Selector

Property Value

•

•

•

• max-height, min-width, min-height

Aspect word keyword

Definition Any string or identifier in JavaScript. Reserved words with specific meanings.

purpose Used as names for variables, functions, etc. Used to define JavaScript syntax or logic.

example myVar, calculate, userName if, else, let, const, return

restriction Can be user-defined and custom. Cannot be used as identifiers or variables.

• Primitive

• Referenced

• if

• else

• else if

• while

• for

Document Object Model

Four pillars of DOM:

1) Selection of a

element

2) Changing HTML

3) Changing CSS

4)Event Listener

Purpose: To identify and select specific elements in the DOM for

manipulation.
Types:

• By ID: document.getElementById()

• By Class: document.getElementsByClassName()

• By Tag Name: document.getElementsByTagName()

• By CSS Selector: document.querySelector() and

document.querySelectorAll()

Purpose: Modify the structure or content of the selected

elements..Types:

• Changing inner content: .innerHTML or .textContent

• Changing attributes: .setAttribute() or

.removeAttribute()

Purpose: Alter the styling of selected

elements..

Types:

• Inline CSS: Modify styles using .style

• Add/Remove Classes: Use .classList.add(), .classList.remove(),

.classList.toggle()

Purpose: Respond to user interactions or other events..

Types:

• Mouse Events: click, mouseover, mouseout

• Keyboard Events: keydown, keyup

• Form Events: submit, change, focus

• Other Events: load, resize

Hackseries 01

React JS

Introduction to React

1.What is React?
2.Working of DOM
3.Problems with JS

4.Working of React
5.JS Vs React
6.Intro to Components

• HTML is required for React
• CSS is required for React
• JS is required for React

1.JavaScript library to build Dynamic and
interactive user interfaces

2.Developed at Facebook in 2011.
3.Currently most widely used JS library for

front-end development.
4.Used to create single page application (page

does not re-load).

1. What is React

1.Browser takes HTML and create
DOM.

2.JS helps us modify DOM based on
user actions or events.

3.In big applications, Working with
DOM becomes complicated

2. Working of DOM

3. Problems with JavaScript

1.React has a simpler mental
model

2.JS is cumbersome
3.JS is Error-prone
4.JS is Hard to maintain

1. No need to worry about querying and
updating DOM elements.

2. React creates a web page with small and
reusable components

3. React will take care of creating and
updating DOM elements.

4. IT saves a lot of time, cheezein aasan
hai, pahele se likhi hui hain

4. Working of React

1.JS is imperative: You define steps to

reach your desired state.

2.React is Declarative: You define the

target UI state and then react figures

out how to reach that state.

5. JS Vs React

6. Introduction to Components

Components help us
write reusable,
modular and better
organized code.

React application is a tree of components with App Component as the

root bringing everything together.

6. Introduction to Components

Introduction Revision

1. What is React?

2. Working of DOM
3. Problems with JS
4. Working of React
5. JS Vs React
6. Intro to Components

Create a React App

1. SETUP IDE
2. CREATE A REACT APP
3. PROJECT STRUCTURE

7. What is IDE

1. IDE stands for Integrated Development

Environment.

2. Software suite that consolidates basic

tools

required for software development.

1. Central hub for coding, finding
problems, and testing.

1. Designed to improve developer efficiency.

7. Need of IDE

1. Streamlines development.
2. Increases productivity.
3. Simplifies complex tasks.
4. Offers a unified workspace.
5. IDE Features:

1. Code Autocomplete
2. Syntax Highlighting
3. Version Control
4. Error Checking

7. Install latest Node

1. Search Download NodeJS

7. Installation & Setup

1. Search VS Code
2. Keep Your Software up to

date

7. VsCode Extensions and Settings

1. Live Server / Live
Preview

2. Prettier (Format on
Save)

3. Line Wrap
4. Tab Size from 4 to 2

8. Create a React App

1. Official tool is CRA(Create React APP)

2. Vite is a modern tool to create React

Project.

3. Vite produces Quick and Small bundle size.

4. Vite: Use npm run dev to launch dev server.

5. Use npm start for CRA.

9. Project Structure

1. node_modules/ has all the installed node

packages

2. public/ Directory: Contains static files that don't

change.

3. src/ Directory: Main folder for the React code.

1. components/: Reusable parts of the UI, like

buttons or headers.

2. assets/: Images, fonts, and other static files.

3. styles/: CSS or stylesheets.

4.package.json contains information about this

project like name, version, dependencies on other

react packages.

5.vite.config.js contains vite config.

1.File Extensions

2.Class vs Function Components

3.What is JSX?

4.Exporting component

5.Other important Points

6.Dynamic Components

7.Reusable Components

Creating React Components

10. File Extensions
.JS

• Stands for JavaScript
• Contains regular JavaScript code

• Used for general logic and

components

.JSX
• Stands for JavaScript XML

• Combines JavaScript with HTML-

like tags

• Makes it easier to design UI

components

Class Components
• Stateful: Can manage state.
• Lifecycle: Access to lifecycle

methods.
• Verbose: More boilerplate code.
• Not Preferred anymore.

Functional Components
• Initially stateless.
• Can use Hooks for state and effects.
• Simpler and more concise.
• More Popular.

Class vs Function Components

1. Definition: JSX determines how the UI

will look wherever the component is

used.

2. Not HTML: Though it resembles HTML,

you're actually writing JSX, which

stands for JavaScript XML.

3. Conversion: JSX gets converted to

regular JavaScript.

4. Babeljs.io/repl is a tool that allows you

to see how JSX is transformed into

JavaScript.

What is JSX?

1. Enables the use of a component in other parts.

2. Default Export: Allows exporting a single component

as the default from a module.

3. Named Export: Allows exporting multiple items from
a module.

4. Importing: To use an exported component, you need

to import it in the destination file using import

syntax.

Exporting components

1. Naming: Must be capitalized;

lowercase for default HTML.

2. HTML: Unlike vanilla JS where you

can't directly write HTML, in React,

you can embed HTML-like syntax

using

JSX.

1. CSS: In React, CSS can be directly

imported into component files,

allowing for modular and component-

specific styling.

Other important Points

1. Dynamic Content: JSX allows

the creation of dynamic and

interactive UI components.

2. JavaScript Expressions: Using

{}, we can embed any JS

expression

directly within JSX. This includes

variables, function calls, and

more.

Dynamic Components

1. Modularity: Components are modular, allowing for easy

reuse across different parts of an application.

2. Consistency: Reusing components ensures UI consistency

and reduces the chance of discrepancies.

3. Efficiency: Reduces development time and effort by
avoiding duplication of code.

4. Maintainability: Changes made to a reused component

reflect everywhere it's used, simplifying updates and bug

fixes.

Reusable Components

Creating React Components Revision

1. File Extensions

2. Class vs Function Components

3. What is JSX?

4. Exporting component

5. Other important Points

6. Dynamic Components

7. Reusable Components

Including Bootstrap
1. Responsive: Mobile-first design for all device

sizes.

2. Components: Pre-styled elements like buttons and

navbars.

3. Customizable: Modify default styles as needed.
4. Cross-Browser: Consistent look across browsers.
5. Open-Source: Free with community support.

1. Install:
npm i bootstrap@5.3.2
1. import
import "bootstrap/dist/css/bootstrap.min.css";

mailto:bootstrap@5.3.2

Project: Clock

Fragments

1. What?
Allows grouping of multiple elements

without extra DOM nodes.

1. Why?
⚬ Return multiple elements without a

wrapping parent.

⚬ Cleaner DOM and consistent styling.

2. How? Two syntaxes:
3. <React.Fragment>...</React.Fragmen

t>
4. Short: <>...</>

1. Purpose: Render lists from array data.
2. JSX Elements: Transform array items into

JSX.
3. Inline Rendering: Directly inside JSX
{items.map(item => <li

key={item.id}>{item.name})}
1. Key Prop: Assign unique key for optimized

re-renders.
<div key={item.id}>{item.name}</div>

Map Method

Conditional Rendering
• Displaying content based on certain conditions.
• Allows for dynamic user interfaces. Methods

• If-else statements: Choose between two blocks of

content.
• Ternary operators: Quick way to choose
between two options.
• Logical operators: Useful for rendering content

when a condition is true.
Benefits
• Enhances user experience.
• Reduces unnecessary rendering.
• Makes apps more interactive and responsive.

Conditional Rendering

Props in React
• Short for properties
• Mechanism for passing data.
• Read-only by default Usage

• Pass data from parent to child
component.

• Makes components reusable.
• Defined as attributes in JSX. Key Points

• Data flows one-way (downwards).
• Props are immutable.
• Used for communication between

components. Examples

<Header title="My App" />

Passing Data via Props

1. Localized class names to avoid global
conflicts.

2. Styles are scoped to individual
components.

3. Helps in creating component-specific
styles.

4. Automatically generates unique class
names.

5. Promotes modular and maintainable CSS.
6. Can use alongside global CSS when needed.

CSS Modules

1. children is a special prop for passing
elements into components.

2. Used for flexible and reusable component
designs.

3. Common in layout or container
components.

4. Accessed with props.children.
5. Can be any content: strings, numbers, JSX,

or components.
6. Enhances component composability and

reusability.

Passing Children

Handling Events

1. React events use camelCase, e.g., onClick.
2. Uses synthetic events, not direct browser events.
3. Event handlers can be functions or arrow

functions.
4. Use onChange for controlled form inputs.
5. Avoid inline arrow functions in JSX for

performance.

1. Pass dynamic behaviour between
components.

2. Enables upward communication
from child to parent.

3. Commonly used for event
handling.

4. Parent defines a function, child
invokes it.

5. Enhances component interactivity.
6. Example:
<Button onClick={handleClick} />

Passing Functions via Props

State:
• Local and mutable data within a component.
• Initialized within the component.
• Can change over time.
• Causes re-render when updated.
• Managed using useState in functional

components.

Props:
• Passed into a component from its parent.
• Read-only (immutable) within the receiving

component.
• Allow parent-to-child component

communication.
• Changes in props can also cause a re-render.

State vs Props

1. You can use a lot of icons without managing them.

2. Install Package
npm install react-icons –save
1. Use icon:
import {IconName} from "react-icons/fc";

React-icon Library

1. Inspection: Allows inspection of React

component hierarchies.

2. State & Props: View and edit the current state

and props of components.

3. Performance: Analyze component re-renders

and performance
bottlenecks.

1. Navigation: Conveniently navigate through the

entire component tree.

2. Filtering: Filter components by name or source
to locate them

quickly.

1. Real-time Feedback: See live changes as you
modify state or props.

Inspecting with React Dev Tools

How React Works
Root Component:

• The App is the main or root component of a React
application.

• It's the starting point of your React component tree.

Virtual DOM:
• React creates an in-memory structure called the virtual

DOM.
• Different from the actual browser DOM.
• It's a lightweight representation where each node stands for

a
component and its attributes.

Reconciliation Process:
• When component data changes, React updates the virtual

DOM's
state to mirror these changes.
• React then compares the current and previous versions of the

virtual DOM.
• It identifies the specific nodes that need updating.
• Only these nodes are updated in the real browser DOM,

making it efficient.

React and ReactDOM:
• The actual updating of the browser's DOM isn't done by React itself.
• It's handled by a companion library called react-dom.

Root Element:
• The root div acts as a container for the React app.
• The script tag is where the React app starts executing.
• If you check main.tsx, the component tree is rendered inside this
root element.

Strict Mode Component:
• It's a special component in React.
• Doesn't have a visual representation.
• Its purpose is to spot potential issues in your React app.

Platform Independence:
• React's design allows it to be platform-agnostic.
• While react-dom helps build web UIs using React, ReactNative can be

used to craft mobile app UIs.

How React Works

React, Angular, and Vue:
• React is a library, while Angular and Vue.js are frameworks.
• React focuses on UI; Angular and Vue.js offer comprehensive tools for full app

development.

Library vs. Framework:
• A library offers specific functionality.
• A framework provides a set of tools and guidelines.
• In simpler terms: React is a tool; Angular and Vue.js are toolsets.

React's Specialty:
• React's main role is crafting dynamic, interactive UIs.
• It doesn't handle routing, HTTP calls, state management, and more.

React's Flexibility:
• React doesn't dictate tool choices for other app aspects.
• Developers pick what fits their project best.

About Angular and Vue.js:
• Angular, developed by Google, provides a robust framework with a steep learning

curve.
• Vue.js is known for its simplicity and ease of integration, making
it beginner-friendly.

React Vs Angular vs Vue

1. fetch: Modern JavaScript API for
network requests.

2. Promise-Based: Returns a Promise with

a Response object.

3. Usage: Default is GET. For POST use
method: 'POST'

4. Response: Use .then() and
response.json() for JSON data.

5. Errors: Doesn't reject on HTTP errors.
Check response.ok.

6. Headers: Managed using the Headers
API.

Data fetching using Fetch

Thank You !!!!!

